A novel 2-phase residual U-net algorithm combined with optimal mass transportation for 3D brain tumor detection and segmentation

Author:

Lin Wen-Wei,Lin Jia-Wei,Huang Tsung-Ming,Li Tiexiang,Yueh Mei-Heng,Yau Shing-Tung

Abstract

AbstractUtilizing the optimal mass transportation (OMT) technique to convert an irregular 3D brain image into a cube, a required input format for a U-net algorithm, is a brand new idea for medical imaging research. We develop a cubic volume-measure-preserving OMT (V-OMT) model for the implementation of this conversion. The contrast-enhanced histogram equalization grayscale of fluid-attenuated inversion recovery (FLAIR) in a brain image creates the corresponding density function. We then propose an effective two-phase residual U-net algorithm combined with the V-OMT algorithm for training and validation. First, we use the residual U-net and V-OMT algorithms to precisely predict the whole tumor (WT) region. Second, we expand this predicted WT region with dilation and create a smooth function by convolving the step-like function associated with the WT region in the brain image with a $$5\times 5\times 5$$ 5 × 5 × 5 blur tensor. Then, a new V-OMT algorithm with mesh refinement is constructed to allow the residual U-net algorithm to effectively train Net1–Net3 models. Finally, we propose ensemble voting postprocessing to validate the final labels of brain images. We randomly chose 1000 and 251 brain samples from the Brain Tumor Segmentation (BraTS) 2021 training dataset, which contains 1251 samples, for training and validation, respectively. The Dice scores of the WT, tumor core (TC) and enhanced tumor (ET) regions for validation computed by Net1–Net3 were 0.93705, 0.90617 and 0.87470, respectively. A significant improvement in brain tumor detection and segmentation with higher accuracy is achieved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference39 articles.

1. Antonelli, M. et al. The medical segmentation decathlon. Preprint at arxiv:2106.05735 (2021).

2. Simpson, A. L. et al. A large annotated medical image dataset for the development and evaluation of segmentation algorithms. Preprint at arxiv:1902.09063 (2019).

3. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 1993–2024 (2015).

4. Bakas, S. et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017).

5. Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. Preprint at arxiv:1811.02629 (2019).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3