Transfer Learning-Based Approach for Thickness Estimation on Optical Coherence Tomography of Varicose Veins

Author:

Viqar Maryam12,Madjarova Violeta1,Stoykova Elena1,Nikolov Dimitar3,Khan Ekram4,Hong Keehoon5ORCID

Affiliation:

1. Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland

3. Department of Vascular Surgery, Sofiamed University Hospital, 1797 Sofia, Bulgaria

4. Department of Electronics Engineering, Aligarh Muslim University, Aligarh 202001, India

5. Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

Abstract

In-depth mechanical characterization of veins is required for promising innovations of venous substitutes and for better understanding of venous diseases. Two important physical parameters of veins are shape and thickness, which are quite challenging in soft tissues. Here, we propose the method TREE (TransfeR learning-based approach for thicknEss Estimation) to predict both the segmentation map and thickness value of the veins. This model incorporates one encoder and two decoders which are trained in a special manner to facilitate transfer learning. First, an encoder–decoder pair is trained to predict segmentation maps, then this pre-trained encoder with frozen weights is paired with a second decoder that is specifically trained to predict thickness maps. This leverages the global information gained from the segmentation model to facilitate the precise learning of the thickness model. Additionally, to improve the performance we introduce a sensitive pattern detector (SPD) module which further guides the network by extracting semantic details. The swept-source optical coherence tomography (SS-OCT) is the imaging modality for saphenous varicose vein extracted from the diseased patients. To demonstrate the performance of the model, we calculated the segmentation accuracy—0.993, mean square error in thickness (pixels) estimation—2.409 and both these metrics stand out when compared with the state-of-art methods.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie

European Regional Development Fund

Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3