Gliotoxin-mediated bacterial growth inhibition is caused by specific metal ion depletion

Author:

Downes Shane G.,Owens Rebecca A.,Walshe Kieran,Fitzpatrick David A.,Dorey Amber,Jones Gary W.,Doyle Sean

Abstract

AbstractOvercoming antimicrobial resistance represents a formidable challenge and investigating bacterial growth inhibition by fungal metabolites may yield new strategies. Although the fungal non-ribosomal peptide gliotoxin (GT) is known to exhibit antibacterial activity, the mechanism(s) of action are unknown, although reduced gliotoxin (dithiol gliotoxin; DTG) is a zinc chelator. Furthermore, it has been demonstrated that GT synergises with vancomycin to inhibit growth of Staphylococcus aureus. Here we demonstrate, without precedent, that GT-mediated growth inhibition of both Gram positive and negative bacterial species is reversed by Zn2+ or Cu2+ addition. Both GT, and the known zinc chelator TPEN, mediate growth inhibition of Enterococcus faecalis which is reversed by zinc addition. Moreover, zinc also reverses the synergistic growth inhibition of E. faecalis observed in the presence of both GT and vancomycin (4 µg/ml). As well as zinc chelation, DTG also appears to chelate Cu2+, but not Mn2+ using a 4-(2-pyridylazo)resorcinol assay system and Zn2+ as a positive control. DTG also specifically reacts in Fe3+-containing Siderotec™ assays, most likely by Fe3+ chelation from test reagents. GSH or DTT show no activity in these assays. Confirmatory high resolution mass spectrometry, in negative ion mode, confirmed, for the first time, the presence of both Cu[DTG] and Fe[DTG]2 chelates. Label free quantitative proteomic analysis further revealed major intracellular proteomic remodelling within E. faecalis in response to GT exposure for 30–180 min. Globally, 4.2–7.2% of detectable proteins exhibited evidence of either unique presence/increased abundance or unique absence/decreased abundance (n = 994–1160 total proteins detected), which is the first demonstration that GT affects the bacterial proteome in general, and E. faecalis, specifically. Unique detection of components of the AdcABC and AdcA-II zinc uptake systems was observed, along with apparent ribosomal reprofiling to zinc-free paralogs in the presence of GT. Overall, we hypothesise that GT-mediated bacterial growth inhibition appears to involve intracellular zinc depletion or reduced bioavailability, and based on in vitro chelate formation, may also involve dysregulation of Cu2+ homeostasis.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3