An improved gray wolf optimization algorithm solving to functional optimization and engineering design problems

Author:

Qiu Yihui,Yang Xiaoxiao,Chen Shuixuan

Abstract

AbstractAs a newly proposed optimization algorithm based on the social hierarchy and hunting behavior of gray wolves, grey wolf algorithm (GWO) has gradually become a popular method for solving the optimization problems in various engineering fields. In order to further improve the convergence speed, solution accuracy, and local minima escaping ability of the traditional GWO algorithm, this work proposes a multi-strategy fusion improved gray wolf optimization (IGWO) algorithm. First, the initial population is optimized using the lens imaging reverse learning algorithm for laying the foundation for global search. Second, a nonlinear control parameter convergence strategy based on cosine variation is proposed to coordinate the global exploration and local exploitation ability of the algorithm. Finally, inspired by the tunicate swarm algorithm (TSA) and the particle swarm algorithm (PSO), a nonlinear tuning strategy for the parameters, and a correction based on the individual historical optimal positions and the global optimal positions are added in the position update equations to speed up the convergence of the algorithm. The proposed algorithm is assessed using 23 benchmark test problems, 15 CEC2014 test problems, and 2 well-known constraint engineering problems. The results show that the proposed IGWO has a balanced E&P capability in coping with global optimization as analyzed by the Wilcoxon rank sum and Friedman tests, and has a clear advantage over other state-of-the-art algorithms.

Funder

The work was supported by the National Natural Science Foundation of China

the Natural Science Foundation of Fujian Province of China

Fujian Provincial Department of Science and Technology University Industry University Cooperation Science and Technology Major Project

Fujian Provincial Key Laboratory of Green Intelligent Cleaning Technology and Equipment

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3