A Modified Sand Cat Swarm Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Engineering Problems

Author:

Peng Huijie123,Zhang Xinran123,Li Yaping123,Qi Jiangtao123,Kan Za123,Meng Hewei1

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832000, China

2. Engineering Research Center for Production Mechanization of Oasis Characteristic Cash Crop, Ministry of Education, Shihezi 832000, China

3. Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832000, China

Abstract

Addressing the issues of the sand cat swarm optimization algorithm (SCSO), such as its weak global search ability and tendency to fall into local optima, this paper proposes an improved strategy called the multi-strategy integrated sand cat swarm optimization algorithm (MSCSO). The MSCSO algorithm improves upon the SCSO in several ways. Firstly, it employs the good point set strategy instead of a random strategy for population initialization, effectively enhancing the uniformity and diversity of the population distribution. Secondly, a nonlinear adjustment strategy is introduced to dynamically adjust the search range of the sand cats during the exploration and exploitation phases, significantly increasing the likelihood of finding more high-quality solutions. Lastly, the algorithm integrates the early warning mechanism of the sparrow search algorithm, enabling the sand cats to escape from their original positions and rapidly move towards the optimal solution, thus avoiding local optima. Using 29 benchmark functions of 30, 50, and 100 dimensions from CEC 2017 as experimental subjects, this paper further evaluates the MSCSO algorithm through Wilcoxon rank-sum tests and Friedman’s test, verifying its global solid search ability and convergence performance. In practical engineering problems such as reducer and welded beam design, MSCSO also demonstrates superior performance compared to five other intelligent algorithms, showing a remarkable ability to approach the optimal solutions for these engineering problems.

Funder

Autonomous Region Agricultural and Rural Mechanization Development Center

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3