Gate reflectometry of single-electron box arrays using calibrated low temperature matching networks

Author:

Filmer Matthew J.,Huebner Matthew,Zirkle Thomas A.,Jehl Xavier,Sanquer Marc,Chisum Jonathan D.,Orlov Alexei O.,Snider Gregory L.

Abstract

AbstractSensitive dispersive readouts of single-electron devices (“gate reflectometry”) rely on one-port radio-frequency (RF) reflectometry to read out the state of the sensor. A standard practice in reflectometry measurements is to design an impedance transformer to match the impedance of the load to the characteristic impedance of the transmission line and thus obtain the best sensitivity and signal-to-noise ratio. This is particularly important for measuring large impedances, typical for dispersive readouts of single-electron devices because even a small mismatch will cause a strong signal degradation. When performing RF measurements, a calibration and error correction of the measurement apparatus must be performed in order to remove errors caused by unavoidable non-idealities of the measurement system. Lack of calibration makes optimizing a matching network difficult and ambiguous, and it also prevents a direct quantitative comparison between measurements taken of different devices or on different systems. We propose and demonstrate a simple straightforward method to design and optimize a pi matching network for readouts of devices with large impedance, $$Z \ge 1\hbox {M}\Omega$$ Z 1 M Ω . It is based on a single low temperature calibrated measurement of an unadjusted network composed of a single L-section followed by a simple calculation to determine a value of the “balancing” capacitor needed to achieve matching conditions for a pi network. We demonstrate that the proposed calibration/error correction technique can be directly applied at low temperature using inexpensive calibration standards. Using proper modeling of the matching networks adjusted for low temperature operation the measurement system can be easily optimized to achieve the best conditions for energy transfer and targeted bandwidth, and can be used for quantitative measurements of the device impedance. In this work we use gate reflectometry to readout the signal generated by arrays of parallel-connected Al-AlOx single-electron boxes. Such arrays can be used as a fast nanoscale voltage sensor for scanning probe applications. We perform measurements of sensitivity and bandwidth for various settings of the matching network connected to arrays and obtain strong agreement with the simulations.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3