Regulating soil bacterial diversity, community structure and enzyme activity using residues from golden apple snails

Author:

Wang JiaxinORCID,Lu Xuening,Zhang JiaenORCID,Wei Guangchang,Xiong Yue

Abstract

AbstractIt has been shown that the golden apple snail (GAS, Pomacea canaliculata), which is a serious agricultural pest in Southeast Asia, can provide a soil amendment for the reversal of soil acidification and degradation. However, the impact of GAS residue (i.e., crushed, whole GAS) on soil bacterial diversity and community structure remains largely unknown. Here, a greenhouse pot experiment was conducted and 16S rRNA gene sequencing was used to measure bacterial abundance and community structure in soils amended with GAS residue and lime. The results suggest that adding GAS residue resulted in a significant variation in soil pH and nutrients (all P < 0.05), and resulted in a slightly alkaline (pH = 7.28–7.75) and nutrient-enriched soil, with amendment of 2.5–100 g kg−1 GAS residue. Soil nutrients (i.e., NO3-N and TN) and TOC contents were increased (by 132–912%), and some soil exocellular enzyme activities were enhanced (by 2–98%) in GAS residue amended soil, with amendment of 1.0–100 g kg−1 GAS residue. Bacterial OTU richness was 19% greater at the 2.5 g kg−1 GAS residue treatment than the control, while it was 40% and 53% lower at 100 g kg−1 of GAS residue and 50 g kg−1 of lime amended soils, respectively. Firmicutes (15–35%) was the most abundant phylum while Bacterioidetes (1–6%) was the lowest abundant one in GAS residue amended soils. RDA results suggest that the contents of soil nutrients (i.e., NO3-N and TN) and soil TOC explained much more of the variations of bacterial community than pH in GAS residue amended soil. Overuse of GAS residue would induce an anaerobic soil environment and reduce bacterial OTU richness. Soil nutrients and TOC rather than pH might be the main factors that are responsible for the changes of bacterial OTU richness and bacterial community structure in GAS residue amended soil.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3