Evaluating the detectability of methane point sources from satellite observing systems using microscale modeling

Author:

Bhardwaj Piyush,Kumar Rajesh,Mitchell Douglas A.,Randles Cynthia A.,Downey Nicole,Blewitt Doug,Kosovic Branko

Abstract

AbstractThis study evaluates the efficacy of current satellite observing systems to detect methane point sources from typical oil and gas production (O&G) facilities using a novel very high-resolution methane concentration dataset generated using a microscale model. Transport and dispersion of typical methane emissions from seven well pads were simulated and the column enhancements for pseudo satellite pixel sizes of 3, 1, and 0.05 km were examined every second of the 2-h simulations (7200 realizations). The detectability of plumes increased with a pixel resolution, but two orders of magnitude change in emission rates at the surface results only in about 0.4%, 1.6%, and 47.8% enhancement in the pseudo-satellite retrieved methane column at 3, 1, and 0.05 km, respectively. Average methane emission rates estimated by employing the integrated mass enhancement (IME) method to column enhancements at 0.05 km showed an underestimation of the mean emissions by 0.2–6.4%. We show that IME derived satellite-based inversions of methane emissions work well for large persistent emission sources (e.g., super emitters), however, the method is ill-suited to resolve short-term emission fluctuations (< 20 min) in typical well site emissions due to the limitations in satellite detection limits, precision, overpass timing, and pixel resolution.

Funder

ExxonMobil Research and Engineering Company

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference17 articles.

1. Schwietzke, S. et al. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538, 88–91 (2016).

2. Alvarez, R. A. et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 361, 186–188 (2018).

3. US EPA. Overview of Greenhouse Gases. US EPA https://www.epa.gov/ghgemissions/overview-greenhouse-gases (2015).

4. Myhre, G. et al. 8 Anthropogenic and Natural Radiative Forcing, 82.

5. Varon, D. J. et al. Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes. Atmos. Meas. Tech. 11, 5673–5686 (2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3