Quantifying methane point sources from fine-scale satellite observations of atmospheric methane plumes
-
Published:2018-10-18
Issue:10
Volume:11
Page:5673-5686
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Varon Daniel J.ORCID, Jacob Daniel J., McKeever Jason, Jervis Dylan, Durak Berke O. A., Xia YanORCID, Huang YiORCID
Abstract
Abstract. Anthropogenic methane emissions originate from a large
number of relatively small point sources. The planned GHGSat satellite fleet
aims to quantify emissions from individual point sources by measuring methane
column plumes over selected ∼10×10 km2 domains with
≤50×50 m2 pixel resolution and 1 %–5 %
measurement precision. Here we develop algorithms for retrieving point source
rates from such measurements. We simulate a large ensemble of instantaneous
methane column plumes at 50×50 m2 pixel resolution for a range
of atmospheric conditions using the Weather Research and Forecasting model
(WRF) in large eddy simulation (LES) mode and adding instrument noise. We
show that standard methods to infer source rates by Gaussian plume inversion
or source pixel mass balance are prone to large errors because the turbulence
cannot be properly parameterized on the small scale of instantaneous methane
plumes. The integrated mass enhancement (IME) method, which relates total
plume mass to source rate, and the cross-sectional flux method, which infers
source rate from fluxes across plume transects, are better adapted to the
problem. We show that the IME method with local measurements of
the 10 m wind speed can infer source rates with an error of
0.07–0.17 t h-1+5 %–12 % depending on instrument precision
(1 %–5 %). The cross-sectional flux method has slightly larger
errors (0.07–0.26 t h-1+8 %–12 %) but a simpler physical
basis. For comparison, point sources larger than 0.3 t h−1 contribute
more than 75 % of methane emissions reported to the US Greenhouse Gas
Reporting Program. Additional error applies if local wind speed measurements
are not available and may dominate the overall error at low wind speeds. Low
winds are beneficial for source detection but detrimental for source
quantification.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference43 articles.
1. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S.,
Rozanov, V. V., Chance, K. V., and Goede, A. P. H.:
SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150,
https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999. 2. Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Heymann, J., Tretner, A.,
and Erzinger, J.: A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications,
Atmos. Meas. Tech., 3, 781–811, https://doi.org/10.5194/amt-3-781-2010, 2010. 3. Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry, Cambridge University
Press,
https://doi.org/10.1017/9781316544754, 2017. 4. Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., Burrows, J. P., Boesch, H., Parker, R. J.,
Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Frankenberg, C., and Turner, A. J.: Satellite-derived methane
hotspot emission estimates using a fast data-driven method, Atmos. Chem. Phys., 17, 5751–5774, https://doi.org/10.5194/acp-17-5751-2017, 2017. 5. Butz, A., Guerlet, S., Hasekamp, O., Schepers, D., Galli, A., Aben, I.,
Frankenberg, C., Hartmann, J. M., Tran, H., Kuze, A.,
and Keppel-Aleks, G.: Toward accurate CO2 and CH4 observations from
GOSAT, Geophys. Res. Lett., 38, L14812, https://doi.org/10.1029/2011GL047888, 2011.
Cited by
162 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|