Abstract
AbstractSilicon Carbide (SiC) is a radiation hard wide bandgap semiconductor, which makes it an interesting alternative for radiation detector fabrication, with potential applications such as High Energy Physics, synchrotron and radiotherapy instrumentation. In addition, by reducing the amount of metal over the active area of said detectors (typically used for electrical connectivity with the implant of the pn-junction) unwanted effects from secondary interactions which can affect the accuracy of the measurement can be diminished, essential to meet the medical standards of precision. In this article, the use of epitaxially-grown graphene is explored as an alternative to metallic contacts with these prototypes. To this end, the first prototypes of SiC diodes with epitaxial graphene contacts were produced at IMB-CNM for radiation detection,along with reference devices. In order to characterise the feasibility of the technology in the medical application, the dose rate linearity of the SiC device with graphene was measured in a radiotherapy Linac in the dose rate range of 1–6 Gy/min. The response of the device was compared to that observed on devices with similar geometries reported elsewhere. To fully characterise the devices, the same exercise was repeated in a laboratory X-ray tube. Under the later set-up, the prototype is compared against a device with a fully metallised active region.
Funder
EC | Horizon 2020 Framework Programme
IMB-CNM-CSIC, PlACeD project
Publisher
Springer Science and Business Media LLC