Author:
Honda T.,Yamasaki Y.,Nakao H.,Murakami Y.,Ogura T.,Kousaka Y.,Akimitsu J.
Abstract
Abstract
Topological magnetic structure possesses topological stability characteristics that make it robust against disturbances which are a big advantage for data processing or storage devices of spintronics; nonetheless, such characteristics have been rarely clarified. This paper focused on the formation of chiral soliton lattice (CSL), a one-dimensional topological magnetic structure, and provides a discussion of its topological stability and influence of thermal fluctuation. Herein, CSL responses against change of temperature and applied magnetic field were investigated via small-angle resonant soft X-ray scattering in chromium niobium sulfide ($$\hbox {CrNb}_3\hbox {S}_6$$
CrNb
3
S
6
). CSL transformation relative to the applied magnetic field demonstrated a clear agreement with the theoretical prediction of the sine-Gordon model. Further, there were apparent differences in the process of chiral soliton creation and annihilation, discussed from the viewpoint of competing between thermal fluctuation and the topological metastability.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science
Ministry of Education, Culture, Sports, Science and Technology
Research Foundation for Opto-Science and Technology
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献