Author:
Zaini Nur’atiah,Ean Lee Woen,Ahmed Ali Najah,Abdul Malek Marlinda,Chow Ming Fai
Abstract
AbstractRapid growth in industrialization and urbanization have resulted in high concentration of air pollutants in the environment and thus causing severe air pollution. Excessive emission of particulate matter to ambient air has negatively impacted the health and well-being of human society. Therefore, accurate forecasting of air pollutant concentration is crucial to mitigate the associated health risk. This study aims to predict the hourly PM2.5 concentration for an urban area in Malaysia using a hybrid deep learning model. Ensemble empirical mode decomposition (EEMD) was employed to decompose the original sequence data of particulate matter into several subseries. Long short-term memory (LSTM) was used to individually forecast the decomposed subseries considering the influence of air pollutant parameters for 1-h ahead forecasting. Then, the outputs of each forecast were aggregated to obtain the final forecasting of PM2.5 concentration. This study utilized two air quality datasets from two monitoring stations to validate the performance of proposed hybrid EEMD-LSTM model based on various data distributions. The spatial and temporal correlation for the proposed dataset were analysed to determine the significant input parameters for the forecasting model. The LSTM architecture consists of two LSTM layers and the data decomposition method is added in the data pre-processing stage to improve the forecasting accuracy. Finally, a comparison analysis was conducted to compare the performance of the proposed model with other deep learning models. The results illustrated that EEMD-LSTM yielded the highest accuracy results among other deep learning models, and the hybrid forecasting model was proved to have superior performance as compared to individual models.
Funder
BOLD Publication Fund 2022, Universiti Tenaga Nasional, Malaysia
Publisher
Springer Science and Business Media LLC
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献