Author:
Nongnuang Toon,Jitsangiam Peerapong,Rattanasak Ubolluk,Chindaprasirt Prinya
Abstract
AbstractGeopolymer (GP) was invented to replace concrete, but its heat curing requirement hinders extensive use in real-world construction. Past studies have tested several methods of heat curing. However, the conventional heat curing process (using an oven) is still required for GP to develop good strength on the laboratory scale. This study introduces a new heat curing method for GP based on an electromagnetic field (EMF)generator and a ferromagnetic material. Waste iron powder (WIP) was used as the ferromagnetic material mixed with the fly ash-based GP to generate heat through induction. The sample was cured at 1.18 kW with 150–200 kHz of EMF generator for 15 min. The results showed that 5% of the WIP mixed sample gained compressive and flexural strength at 28 days more than the control (oven-cured). Compressive and flexural strengths of 76.8 MPa and 11.3 MPa were obtained, respectively. In addition, heat induction enhanced the densification and geopolymerization in the GP matrix following SEM and XRD results. This alternative method of heat curing accelerated the formation of the GP matrix, reduced curing time, and increased strength. Moreover, this EMF curing method can save 99.70% of the energy consumed compared to the conventional heat curing method.
Funder
Department of Civil Engineering, Chiang Mai University
Research and Graduate Studies, Khon Kaen University
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Kumlai, S., Jitsangiam, P. & Pichayapan, P. The implications of increasing temperature due to climate change for asphalt concrete performance and pavement design. KSCE J. Civ. Eng. 21, 1222–1234 (2017).
2. Chindaprasirt, P. & Rattanasak, U. Characterization of the porous alkali-activated fly ash composite as solid adsorbent. Int. J. Greenhouse Gas Control 85, 30–35 (2019).
3. Chindaprasirt, P. & Rattanasak, U. Fabrication of self-cleaning fly ash/polytetrafluoroethylene material for cement mortar spray-coating. J. Clean. Prod. 264, 121748 (2020).
4. Jitsangiam, P., Nikraz, H. & Siripun, K. Construction and demolition (C&D) waste as a road base material for western australia roads. Aust. Geomech. J. 44, 57–62 (2009).
5. Jitsangiam, P. & Nikraz, H. Coarse bauxite residue for roadway construction materials. Int. J. Pavement Eng. 14, 265–273 (2013).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献