Microstructural Analysis of Thermally Treated Geopolymer Incorporated with Neodymium

Author:

Knežević Sanja1ORCID,Ivanović Marija1ORCID,Stanković Dalibor2ORCID,Kisić Danilo3,Nenadović Snežana1ORCID,Potočnik Jelena3,Nenadović Miloš3

Affiliation:

1. Department of Materials, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrović Alasa 12-14, Vinča, 11000 Belgrade, Serbia

2. Faculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia

3. Department of Atomics Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Mike Petrović Alasa 12-14, Vinča, 11000 Belgrade, Serbia

Abstract

The following investigation presents the thermal treatment of geopolymer at 300 °C, 600 °C and 900 °C. We investigated what happens to the geopolymer base when incorporated with 1% and 5% of neodymium in the form Nd2O3. A total of six samples were synthesized. Geopolymer 1 contained 1% and geopolymer 2 contained 5% Nd2O3, and these samples were treated at 300 °C; then, samples geopolymer 3 and geopolymer 4 also had the same percentage composition of Nd2O3 and were treated at 600 °C, while samples geopolymer 5 and geopolymer 6were treated at 900 °C. Physical and chemical changes in the aluminosilicate geopolymer matrix were monitored. The incorporation of rare earths into the polymer network of aluminosilicates has been proven to disrupt the basic structure of geopolymers; however, with increased temperatures, these materials show even more unusual properties. Diffuse reflectance infrared Fourier transform (DRIFT) analysis showed that the intensity of the vibrational band decreases with the increase in temperature during thermal treatment, suggesting alterations in the chemical structure of the geopolymers. Transmission electron microscopy (TEM) analysis showed that the diameter of the nanoparticles containing Al2O3 is in the range 5–10 nm, while larger crystallites range from 30 to 80 nm. Scanning electron microscopy (SEM) analysis revealed that the temperature of the thermal treatment increases to 300 °C and 600 °C; the porosity of geopolymer increases in the form of the appearance of large pores and cracks in material. X-ray photoelectron spectroscopy (XPS) analysis was used to investigate the surface chemistry of geopolymers, including the chemical composition of the surface, the oxidation state of the elements, and the presence of functional groups. The UV/Vis spectra of the synthesized geopolymers doped with Nd3+ show interesting optical properties at 900 °C; the geopolymer matrix completely disintegrates and an amorphous phase with a rare-earth precipitate appears.

Funder

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3