A novel combined intelligent algorithm prediction model for the risk of the coal and gas outburst

Author:

Wang Zhie,Xu Jingde,Ma Jun,Cai Zhuowen

Abstract

AbstractThe mechanism of coal and gas outburst disasters is perplexing, and the evaluation methods of outburst disasters based on various sensitive indicators often have some imprecision and fuzziness. With the concept of accurate and intelligent mining in coal mines proposed in China, selecting quantifiable parameters for machine learning risk prediction can avoid the deviation caused by human subjectivity, and improve the accuracy of coal and gas outburst prediction. Aiming at the shortcomings of the support vector machine (SVM) such as low noise resistance and being prone to be influenced by parameters easily, this research proposed a prediction method based on a grey wolf optimizer to optimize the support vector machine (GWO-SVM). To coordinate the global and local optimization ability of the GWO, Tent Chaotic Mapping and DLH strategies were introduced to improve the optimization ability of the GWO and reduce the local optimal probability. The improved prediction model IGWO-SVM was used to predict the coal and gas outburst. The results showed that this model has faster training speed and higher classification prediction accuracy than the SVM and GWO-SVM models, which the accuracy rate reaching 100%. Finally, to obtain the correlation between the parameters of the coal and gas outburst prediction parameters, the random forest algorithm was used for training, and the three parameters with the highest feature importance were selected to rebuild the data set for machine learning. The accuracy of the IGWO-SVM outburst prediction model based on Random Forest was still 100%. Therefore, even if some prediction parameters are missing, the outburst can still be effectively predicted by using the RF-IGWO-SVM model, which is beneficial for the model application and underground safety management.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3