A novel intelligent risk prediction model for the effectiveness of CO2/N2–ECGD technology

Author:

Wang Xiaoyong1,Wang Zhie1ORCID,Xu Jingde2,Ma Jun1,Zhang Jun1,Cai Zhuowen3

Affiliation:

1. School of Management Engineering Capital University of Economics and Business Beijing Beijing China

2. North China Institute of Science and Technology Institute of Higher Education Langfang Hebei China

3. School of Safety Science and Engineering Anhui University of Science and Technology Huainan Anhui China

Abstract

AbstractTo solve the problems of high sampling requirements and low predictive accuracy resulting from the complexity, uniqueness, and randomness of predicting the risk of the CO2 and N2 injection to enhance coal seam gas drainage (CO2/N2–ECGD) technology. The principal component analysis (PCA) method to reduce the dimensionality of the factor data that contribute to the effect risk of the technology was adopted. And the particle swarm optimization (PSO) method was implemented to search for optimal hyperparameters in support vector machine (SVM) by particle search, as a solution to the traditional SVM hyperparameters optimization problem. A novel risk prediction model using machine learning algorithms for gas injection displacement technology was constructed. The prediction results were tested and compared with those of backpropagation (BP), Random Forest (RF), and Decision Tree (DT) models using data from 29 gas injection displacement field projects in China. The results demonstrated that the SVM model had greater accuracy in prediction than the other three models. Additionally, after PSO optimization and dimensionality reduction, the PCA–PSO–SVM model reached 100% prediction accuracy, while requiring less modeling and operation time. The study provided a reliable and reasonable model for predicting technical effects, along with a theoretical basis for risk management and prevention. First, the technology's influencing indicators were analyzed by examining its mechanisms. Second, we utilized the PCA method to reduce the dimensionality of the factor data that contribute to the risk of the technology's effects. Third, we implemented the PSO method to search for optimal hyperparameters in the SVM through particle search, as a solution to the traditional SVM hyperparameters optimization problem. Finally, the prediction results were tested and compared with those of BP, RF, and DT models using data from 29 gas injection displacement field projects in China. The SVM model was found to have greater accuracy in prediction than the other three models. After PSO optimization and dimensionality reduction, the PCA–PSO–SVM model achieved 100% prediction accuracy while requiring less modeling and operation time. The study presents a valid and reasonable model for predicting technical effects and a theoretical basis for risk management and prevention.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3