Birdsong classification based on ensemble multi-scale convolutional neural network

Author:

Liu Jiang,Zhang Yan,Lv Danjv,Lu Jing,Xie Shanshan,Zi Jiali,Yin Yue,Xu Haifeng

Abstract

AbstractWith the intensification of ecosystem damage, birds have become the symbolic species of the ecosystem. Ornithology with interdisciplinary technical research plays a great significance for protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs recognition. However, as the number of network layers increases in traditional CNN, semantic information gradually becomes richer and detailed information disappears. Secondly, the global information carried by the entire input may be lost in convolution, pooling, or other operations, and these problems will weaken the performance of classification. In order to solve such problems, based on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution neural network (EMSCNN) classification framework. The experiments compared the MSCNN and EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the recognition of 30 species of birds, our models effectively improved the classification effect with high stability and efficiency, indicating that the models have better generalization ability and are suitable for birdsongs species recognition. It provides methodological and technical scheme reference for bird classification research.

Funder

Yunnan Provincial Department of Education

National Natural Science Foundation of China

Yunnan Provincial Science and Technology Department

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3