Author:
Liu Nian,Sugawara Kohki,Yoshitaka Naoya,Yamada Hideaki,Takeuchi Daisuke,Akabane Yuko,Fujino Kenichi,Kawai Kentaro,Arima Kenta,Yamamura Kazuya
Abstract
Abstract
Plasma-assisted polishing (PAP) as a damage-free and highly efficient polishing technique has been widely applied to difficult-to-machine wide-gap semiconductor materials such as 4H-SiC (0001) and GaN (0001). In this study, a 20-mm square large mosaic single crystal diamond (SCD) substrate synthesized by microwave plasma chemical vapor deposition (CVD) was polished by PAP. Argon-based plasma containing oxygen was used in PAP to modify the surface of quartz glass polishing plate, and a high material removal rate (MRR) of 13.3 μm/h was obtained. The flatness of SCD polished by PAP measured by an interferometer was 0.5 μm. The surface roughness measured by both scanning white light interferometer (SWLI) (84-μm square) and atomic force microscope (AFM) (5-μm square) was less than 0.5 nm Sq. The micro-Raman spectroscopy measurement results of mosaic SCD substrate processed by PAP showed that residual stress and non-diamond components on the surface after PAP processing were below the detection limit.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献