Simulation of a machine learning enabled learning health system for risk prediction using synthetic patient data

Author:

Chen Anjun,Chen Drake O.

Abstract

AbstractWhen enabled by machine learning (ML), Learning Health Systems (LHS) hold promise for improving the effectiveness of healthcare delivery to patients. One major barrier to LHS research and development is the lack of access to EHR patient data. To overcome this challenge, this study demonstrated the feasibility of developing a simulated ML-enabled LHS using synthetic patient data. The ML-enabled LHS was initialized using a dataset of 30,000 synthetic Synthea patients and a risk prediction XGBoost base model for lung cancer. 4 additional datasets of 30,000 patients were generated and added to the previous updated dataset sequentially to simulate addition of new patients, resulting in datasets of 60,000, 90,000, 120,000 and 150,000 patients. New XGBoost models were built in each instance, and performance improved with data size increase, attaining 0.936 recall and 0.962 AUC (area under curve) in the 150,000 patients dataset. The effectiveness of the new ML-enabled LHS process was verified by implementing XGBoost models for stroke risk prediction on the same Synthea patient populations. By making the ML code and synthetic patient data publicly available for testing and training, this first synthetic LHS process paves the way for more researchers to start developing LHS with real patient data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3