Impact of different storage conditions with combined use of ethylene blocker on ‘Shalimar’ apple variety

Author:

Khera Kartik,Büchele Felix,Wood Rachael Maree,Thewes Fabio Rodrigo,Wagner Roger,Hagemann Michael Helmut,Neuwald Daniel Alexandre

Abstract

AbstractThis research investigates the impact of storage conditions on the quality and preservation of 'Shalimar' apples, a relatively new cultivar known for its resistance to apple scab and powdery mildew. The study explores the efficacy of different storage techniques such as regular atmosphere (RA), controlled atmosphere (CA), and dynamic controlled atmosphere with CO2 Monitoring (DCA-CD), as well as the integration of 1-methylcyclopropene (1-MCP) at different storage temperatures (1 °C and 3 °C). Various fruit quality parameters were monitored under different storage conditions, including firmness, titratable acidity, total soluble solids, background color, respiration, ethylene production, and volatile compounds. The results indicate that the controlled atmosphere (CA) at 1 °C emerges as an efficient method for long-term storage. However, it is noted that CA storage may impact the apple aroma, emphasizing the need for a balance between preservation and consumer acceptability. On the other hand, DCA-CD at variable temperatures (approximately 2.5 °C) offers a promising approach for maintaining fruit quality and a higher concentration of volatile compounds. Integrating 1-MCP enhances firmness, but its impact varies across storage conditions. Principal component analysis (PCA) provides insights into the relationships between storage conditions, fruit quality, and volatile compounds. This study contributes valuable insights into optimizing storage strategies for ‘Shalimar’ apples, addressing sustainability and quality preservation in apple production.

Funder

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3