Plate osteosynthesis combined with bone cement provides the highest stability for tibial head depression fractures under high loading conditions

Author:

Heilig Philipp,Faerber Lars-Christopher,Paul Mila M.,Kupczyk Eva,Meffert Rainer H.,Jordan Martin C.,Hoelscher-Doht Stefanie

Abstract

AbstractOlder patients sustaining tibial head depression fractures often cannot follow the post-operative rehabilitation protocols with partial weight-bearing of the affected limb, leading to osteosynthesis failure, cartilage step-off and arthritis development. Therefore, the aim of this study was to analyse the biomechanical performance of different types of osteosyntheses alone and in combination with bone cement simulating cyclically high loading conditions of tibial head depression fractures. Lateral tibial head depression fractures (AO: 41-B2.2; Schatzker type III) were created in synthetic bones and stabilized using three different osteosyntheses alone and in combination with a commonly used bone cement (chronOS™): 2 screws, 4 screws in the jail technique and a lateral angle-stable buttress plate. After fixation, the lateral tibial plateau was axially loaded in two, from each other independent testing series: In the first test protocol, 5000 cycles with 500 N and in the end load-to-failure tests were performed. In the second test protocol, the cyclic loading was increased to 1000 N. Parameters of interest were the displacement of the articular fracture fragment, the stiffness and the maximum load. The osteosyntheses revealed a higher stiffness in combination with bone cement compared to the same type of osteosynthesis alone (e.g., 500 N level: 2 screws 383 ± 43 N/mm vs. 2 screws + chronOs 520 ± 108 N/mm, increase by 36%, p < 0.01; 4 screws 368 ± 97 N/mm vs. 4 screws + chronOS 516 ± 109 N/mm, increase by 40%, p < 0.01; plate: 509 ± 73 N/mm vs. plate + chronOs 792 ± 150 N/mm, increase by 56%, p < 0.01). Bone cement reduced the displacement of the plate significantly (500 N level: plate: 8.9 ± 2.8 mm vs. plate + chronOs: 3.1 ± 1.4 mm, reduction by 65%, p < 0.01; 1000 N level: 16.9 ± 3.6 mm vs 5.6 ± 1.3 mm, reduction by 67%, p < 0.01). Thus, the highest stiffness and lowest displacement values were found when using the plate with bone cement in both loading conditions (500 N level: 2 screws + chronOs 3.7 ± 1.3 mm, 4 screws + chronOs 6.2 ± 2.4 mm; 1000 N level: 2 screws + chronOs 6.5 ± 1.2 mm, 4 screws + chronOs 5.7 ± 0.8 mm). From a biomechanical perspective, plate osteosynthesis of tibial head depression fractures should always be combined with bone cement, provides higher stability than 2-screw and 4-screw fixation and is a valid treatment option in cases where extraordinary stability is required.

Funder

Deutsche Forschungsgemeinschaft

Universitätsklinikum Würzburg

Open Access Publication Fund of the University of Wuerzburg, Germany

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3