Exogenous melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and salicylic acid

Author:

Esmaeili Sara,Sharifi Mohsen,Ghanati Faezeh,Soltani Bahram M.,Samari Elaheh,Sagharyan Mostafa

Abstract

AbstractMelatonin is a pleiotropic molecule that can influence various aspects of plant performance. Recent studies have exhibited that it mediates plant defensive responses, probably through managing redox homeostasis. We tried to track the regulatory effects of melatonin on the antioxidant machinery of Linum album cell culture. To this, different concentrations of melatonin were applied, and the oxidative status of cells was investigated by measuring the levels of oxidative molecules and antioxidant agents. The results showed that H2O2 content did not change at the low melatonin levels, while it increased at the high concentrations. It can be correlated with the low melatonin dosages capacity to remove excessive amounts of H2O2, while the high melatonin dosages exhibit toxicity effects. In contrast, the NO enhancement occurred at 50 μM melatonin, proposing its role in triggering melatonin-induced defensive responses. The MDA results stated that NO led to oxidative stress in melatonin-treated cells at 50 μM melatonin. Antioxidant enzyme POD was activated by melatonin treatment, while SOD enzyme behaved reversely which can explain the changes in the H2O2 level. In addition, the analysis of the phenolics profile showed that the contents of phenolic acids, flavonoids, and lignans enhanced following an increase in PAL enzyme activity. The increased level of phenolic hormone SA can indicate that melatonin affects the defensive responses in L. album cells through a SA-dependent pathway. In general, it seems that melatonin, by modulating NO and SA levels, can induce the activity of antioxidant enzymes and the production of phenolics, especially lignans, in L. album cells.

Funder

Iranian Biotechnology Development Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3