Pre‐harvest application of sodium nitroprusside enhances storage root quality in red beet cultivated under normal and drought conditions

Author:

Ferreira Lucélio Mendes1ORCID,Henschel Juliane Maciel1ORCID,Mendes Janaine Juliana Vieira de Almeida2ORCID,Araujo Damiana Justino3ORCID,Ribeiro José Evangelista Santos4ORCID,Ferreira Valquiria Cardoso da Silva4ORCID,da Cruz Oziel Nunes4ORCID,Batista Diego Silva13ORCID

Affiliation:

1. Graduate Program in Agronomy Federal University of Paraíba Areia Brazil

2. Department of Food Technology Federal Institute of the Sertao Pernambucano Salgueiro Brazil

3. Graduate Program in Agrarian Sciences (Agroecology) Federal University of Paraíba Bananeiras Brazil

4. Department of Agroindustrial Management and Technology Federal University of Paraíba Bananeiras Brazil

Abstract

AbstractBACKGROUNDThe role of nitric oxide (NO) in plant stress tolerance, as well as in increasing post‐harvest quality, has been extensively demonstrated in several fruits and vegetable crops; however, the effects of its pre‐harvest application on post‐harvest quality are still poorly documented. Therefore, the pre‐harvest application of NO in red beet (Beta vulgaris subsp. vulgaris) plants cultivated under well‐watered and drought conditions was evaluated to assess whether it improves the post‐harvest quality of their storage roots. Red beet plants cultivated under well‐watered (80% of water holding capacity) or drought condition (15% of water holding capacity) were sprayed weekly with water (control) or 100 μmol L−1 sodium nitroprusside (SNP), an NO donor. Sixty‐six days after sowing, red beet roots were harvested, and root yield, total sugar yield, reducing sugars, non‐reducing sugars, proteins, lipids, root ashes, root moisture, soluble solids, titratable acidity, pH, vitamin C, total phenolics, total betalains, betacyanins, betaxanthins and antioxidant capacity were determined.RESULTSWhile drought led to a reduction in root yield, sugars, lipids and titratable acidity, it increased phenolic compounds, betalains and the antioxidant capacity of beets. SNP reversed the negative effects of drought on sugar, lipid and organic acid contents and increased antioxidant capacity independent of stress.CONCLUSIONPre‐harvest SNP treatment reversed drought‐induced yield reductions in beets, while boosting bioactive compounds and antioxidant capacity. It also enhanced vitamin C content independently, indicating its dual role in stress mitigation and beet quality improvement. Future research should explore other crops and stress conditions. © 2024 Society of Chemical Industry.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3