HIV-1 Vaccine Sequences Impact V1V2 Antibody Responses: A Comparison of Two Poxvirus Prime gp120 Boost Vaccine Regimens

Author:

Shen Xiaoying,Laher FatimaORCID,Moodie ZoeORCID,McMillan Arthur S.,Spreng Rachel L.,Gilbert Peter B.,Huang YingORCID,Yates Nicole L.,Grunenberg NicoleORCID,Juliana McElrath M.,Allen Mary,Pensiero Michael,Mehra Vijay L.,Der Meeren Olivier Van,Barnett Susan W.,Phogat Sanjay,Gray Glenda E.,Bekker Linda-Gail,Corey LawrenceORCID,Tomaras Georgia D.

Abstract

AbstractIn the RV144 trial, vaccine-induced V1V2 IgG correlated with decreased HIV-1 risk. We investigated circulating antibody specificities in two phase 1 poxvirus prime-protein boost clinical trials conducted in South Africa: HVTN 097 (subtype B/E) and HVTN 100 (subtype C). With cross-subtype peptide microarrays and multiplex binding assays, we probed the magnitude and breadth of circulating antibody responses to linear variable loop 2 (V2) and conformational V1V2 specificities. Antibodies targeting the linear V2 epitope, a correlate of decreased HIV-1 risk in RV144, were elicited up to 100% and 61% in HVTN 097 and HVTN 100, respectively. Despite higher magnitude of envelope-specific responses in HVTN 100 compared to HVTN 097 (p’s < 0.001), the magnitude and positivity for V2 linear epitope and V1V2 proteins were significantly lower in HVTN 100 compared to HVTN 097. Meanwhile, responses to other major linear epitopes including the variable 3 (V3) and constant 5 (C5) epitopes were higher in HVTN 100 compared to HVTN 097. Our data reveal substantial differences in the circulating antibody specificities induced by vaccination in these two canarypox prime-protein boost trials. Our findings suggest that the choice of viral sequences in prime-boost vaccine regimens, and potentially adjuvants and immunogen dose, influence the elicitation of V2-specific antibodies.

Funder

Bill and Melinda Gates Foundation

Duke | Center for AIDS Research, Duke University

U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3