Neural network model applied to electromagnetic shielding effectiveness of ultra-light Ni/Cu coated polyester fibrous materials

Author:

Periyasamy Aravin Prince,Muthusamy Lekha Priya,Militký Jiri

Abstract

AbstractThe purpose of effective electromagnetic interference (EMI) shielding is to prevent EMI from smartphone, wireless, and utilization of other electronic devices. The electrical conductivity of materials strongly influences on the EMI shielding properties. In this work, mainly focus to predict the EMI shielding effectiveness on the ultralight weight fibrous materials by artificial neural network (ANN). Prior to the ANN modelling, the ultra-lightweight fibrous materials were electroplated with different concentration of Ni/Cu and then coated with different silanes. This work utilizes the algorithm to provide accurate quantitative values of EMI shielding effectiveness (EM SE). To compare its performance, the experimental and the predicted EM SE values were validated by root-mean-square error (RMSE), mean absolute percentage error (MAPE) values and correlation coefficient ‘r’. The proposed ANN results accurately predict the experimental data with correlation coefficients of 0.991 and 0.997. Further due to its simplicity, reliability as well as its efficient computational capability the proposed ANN model permits relatively fast, cost effective and objective estimates to be made of serving in this industry.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3