Effect of sol–gel treatment on physical, chemical and mechanical stability of copper-coated conductive fabrics: focus on EMI shielding effectiveness

Author:

Periyasamy Aravin PrinceORCID,Venkataraman Mohanapriya,Militky Jiri

Abstract

AbstractThe development of electronic and communication technology keeps us updated, but it also creates electromagnetic interference (EMI), which causes infrastructure, hospitals, military facilities, nuclear power plants and delicate devices to malfunction. Therefore, it is crucial to stop the EMI-related infrastructure and electronic component failure. Copper-coated textiles are one potential example of the electrically conducting materials that might be utilized to provide an EMI shielding. However, the copper-coated materials’ performance is typically reduced by chemical and mechanical deterioration, especially when it comes to EMI shielding. In this work, we have improved their durability of Cu-coated nonwoven fibrous materials (Milife fabric) by simple silanization treatment. Later, the mechanical and chemical stability was assessed in terms of their morphology and EMI shielding effectiveness (EMSE). The silane coating helps to protect the Cu layer from degradation due to mechanical forces and chemical environment. Silanes also be a key element in obtaining improve the EMI shielding properties for a longer period. The formation of conductive structures on the fibrous materials was observed using a scanning electron microscope (SEM), which further confirms the effect of silane coating on chemical stability, abrasion and washing resistance of Cu-coated fibrous materials (cMi) was analyzed. In addition to this, the EMSE values of the silane-coated cMi fibrous materials were used to evaluate the physical, chemical and mechanical stability of the materials.

Funder

Czech Republic and the European Union

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3