Author:
Kim Bumseop,Kim Jeongwoo,Park Noejung
Abstract
AbstractHybrid halide perovskite solar cells have recently attracted substantial attention, mainly because of their high power conversion efficiency. Among diverse variants, (CH3NH3)PbI3 and HC(NH2)2PbI3 are particularly promising candidates because their bandgap well matches the energy range of visible light. Here, we demonstrate that the large nonlinear photocurrent in β-(CH3NH3)PbI3 and α-HC(NH2)2PbI3 is mostly determined by the intrinsic electronic band properties near the Fermi level, rooted in the inorganic backbone, whereas the ferroelectric polarization of the hybrid halide perovskite is largely dominated by the ionic contribution of the molecular cation. The spatial charge shift upon excitation is attributed to the charge transfer from iodine to lead atoms in the backbone, which is independent of the presence of the cationic molecules. Our findings can serve as a guiding principle for the design of future materials for halide-perovskite solar cells with further enhanced photovoltaic performance.
Funder
National Research Foundation of Korea
Incheon National University
Publisher
Springer Science and Business Media LLC
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献