Integrating wastewater and randomised prevalence survey data for national COVID surveillance

Author:

Li Guangquan,Diggle Peter,Blangiardo Marta

Abstract

AbstractDuring the COVID-19 pandemic, studies in a number of countries have shown how wastewater can be used as an efficient surveillance tool to detect outbreaks at much lower cost than traditional prevalence surveys. In this study, we consider the utilisation of wastewater data in the post-pandemic setting, in which collection of health data via national randomised prevalence surveys will likely be run at a reduced scale; hence an affordable ongoing surveillance system will need to combine sparse prevalence data with non-traditional disease metrics such as wastewater measurements in order to estimate disease progression in a cost-effective manner. Here, we use data collected during the pandemic to model the dynamic relationship between spatially granular wastewater viral load and disease prevalence. We then use this relationship to nowcast local disease prevalence under the scenario that (i) spatially granular wastewater data continue to be collected; (ii) direct measurements of prevalence are only available at a coarser spatial resolution, for example at national or regional scale. The results from our cross-validation study demonstrate the added value of wastewater data in improving nowcast accuracy and reducing nowcast uncertainty. Our results also highlight the importance of incorporating prevalence data at a coarser spatial scale when nowcasting prevalence at fine spatial resolution, calling for the need to maintain some form of reduced-scale national prevalence surveys in non-epidemic periods. The model framework is disease-agnostic and could therefore be adapted to different diseases and incorporated into a multiplex surveillance system for early detection of emerging local outbreaks.

Funder

The Department for Health and Social Care with in-kind support from The Alan Turing Institute and The Royal Statistical Society

Medical Research Council

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3