Abstract
AbstractThis study presents a wastewater-based mathematical model for assessing the transmission dynamics of the SARS-CoV-2 pandemic in Miami-Dade County, Florida. The model, which takes the form of a deterministic system of nonlinear differential equations, monitors the temporal dynamics of the disease, as well as changes in viral RNA concentration in the county’s wastewater system (which consists of three sewage treatment plants). The model was calibrated using the wastewater data during the third wave of the SARS-CoV-2 pandemic in Miami-Dade (specifically, the time period from July 3, 2021 to October 9, 2021). The calibrated model was used to predict SARS-CoV-2 case and hospitalization trends in the county during the aforementioned time period, showing a strong correlation (with a correlation coefficientr= 0.99) between the observed (detected) weekly case data and the corresponding weekly data predicted by the calibrated model. The model’s prediction of the week when maximum number of SARS-CoV-2 cases will be recorded in the county during the simulation period precisely matches the time when the maximum observed/reported cases were recorded (which was August 14, 2021). Furthermore, the model’s projection of the maximum number of cases for the week of August 14, 2021 is about 15 times higher than the maximum observed weekly case count for the county on that day (i.e., the maximum case count estimated by the model was 15 times higher than the actual/observed count for confirmed cases). This result is consistent with the result of numerous SARS-CoV-2 modeling studies (including other wastewater-based modeling, as well as statistical models) in the literature. Furthermore, the model accurately predicts a one-week lag between the peak in weekly COVID-19 case and hospitalization data during the time period of the study in Miami-Dade, with the model-predicted hospitalizations peaking on August 21, 2021. Detailed time-varying global sensitivity analysis was carried out to determine the parameters (wastewater-based, epidemiological and biological) that have the most influence on the chosen response function - the cumulative viral load in the wastewater. This analysis revealed that the transmission rate of infectious individuals, shedding rate of infectious individuals, recovery rate of infectious individuals, average fecal loadperpersonperunit time and the proportion of shed viral RNA that is not lost in sewage before measurement at the wastewater treatment plant were most influential to the response function during the entire time period of the study. This study shows, conclusively, that wastewater surveillance data can be a very powerful indicator for measuring (i.e., providing early-warning signal and current burden) and predicting the future trajectory and burden (e.g., number of cases and hospitalizations) of emerging and re-emerging infectious diseases, such as SARS-CoV-2, in a community.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献