AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs

Author:

Usman Muhammad,Khan Shujaat,Lee Jeong-A

Abstract

AbstractSpecies living in extremely cold environments resist the freezing conditions through antifreeze proteins (AFPs). Apart from being essential proteins for various organisms living in sub-zero temperatures, AFPs have numerous applications in different industries. They possess very small resemblance to each other and cannot be easily identified using simple search algorithms such as BLAST and PSI-BLAST. Diverse AFPs found in fishes (Type I, II, III, IV and antifreeze glycoproteins (AFGPs)), are sub-types and show low sequence and structural similarity, making their accurate prediction challenging. Although several machine-learning methods have been proposed for the classification of AFPs, prediction methods that have greater reliability are required. In this paper, we propose a novel machine-learning-based approach for the prediction of AFP sequences using latent space learning through a deep auto-encoder method. For latent space pruning, we use the output of the auto-encoder with a deep neural network classifier to learn the non-linear mapping of the protein sequence descriptor and class label. The proposed method outperformed the existing methods, yielding excellent results in comparison. A comprehensive ablation study is performed, and the proposed method is evaluated in terms of widely used performance measures. In particular, the proposed method demonstrated a high Matthews correlation coefficient of 0.52, F-score of 0.49, and Youden’s index of 0.81 on an independent test dataset, thereby outperforming the existing methods for AFP prediction.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3