Deep-Representation-Learning-Based Classification Strategy for Anticancer Peptides

Author:

Khan Shujaat12ORCID

Affiliation:

1. Department of Computer Engineering, College of Computing and Mathematics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Cancer, with its complexity and numerous origins, continues to provide a huge challenge in medical research. Anticancer peptides are a potential treatment option, but identifying and synthesizing them on a large scale requires accurate prediction algorithms. This study presents an intuitive classification strategy, named ACP-LSE, based on representation learning, specifically, a deep latent-space encoding scheme. ACP-LSE can demonstrate notable advancements in classification outcomes, particularly in scenarios with limited sample sizes and abundant features. ACP-LSE differs from typical black-box approaches by focusing on representation learning. Utilizing an auto-encoder-inspired network, it embeds high-dimensional features, such as the composition of g-spaced amino acid pairs, into a compressed latent space. In contrast to conventional auto-encoders, ACP-LSE ensures that the learned feature set is both small and effective for classification, giving a transparent alternative. The suggested approach is tested on benchmark datasets and demonstrates higher performance compared to the current methods. The results indicate improved Matthew’s correlation coefficient and balanced accuracy, offering insights into crucial aspects for developing new ACPs. The implementation of the proposed ACP-LSE approach is accessible online, providing a valuable and reproducible resource for researchers in the field.

Funder

SDAIA-KFUPM Joint Research Center for Artificial Intelligence

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3