Haploid induction via unpollinated ovule culture in Gerbera hybrida

Author:

Li Fan,Cheng Ying,Zhao Xiaokun,Yu Rongpei,Li Huimin,Wang Lihua,Li Shenchong,Shan Qinli

Abstract

AbstractOvule-derived haploid culture is an effective and important method for genetic study and plant breeding. Gerbera hybrida is a highly heterozygous species, and the lack of homozygous lines presents a challenge for molecular genetic research. Therefore, we performed haploid induction through unpollinated ovule culture and evaluated the effects of several important factors on this culturing procedure in G. hybrida, including genotype, low temperature, and the development seasons of the ovules. Among 45 G. hybrida cultivars analyzed, 29 cultivars exhibited adventitious bud induction via in vitro unpollinated ovule culture with significant different responses, indicating that the genotype of donor plants was a vital factor for inducibility. Four cultivars with significantly different induction rates, including one non-induced cultivar, were selected to analyze seasonal effects. Ovules extracted in the summer consistently had the highest induction rates, and even the non-induced cultivar included in the analysis could be induced at low levels when ovules from summer were used. Low temperature treatment could also promote adventitious bud induction, and in particular, a strong and significant effect was detected after 7 days of cold treatment. Ploidy level measurements by flow cytometry revealed that 288 ovule-derived regenerants were haploid (55.17%) and 218 lines were diploid (41.76%). Moreover, genetic stability analysis of the regenerants indicated 100% similarity to the marker profile of the mother plant. This is the first report of ovule-derived haploids in G. hybrida, which may facilitate the development of homozygous lines for molecular research and plant breeding.

Funder

the Joint Project of Agricultural Basic Research of Yunnan Province - Youth Project

the Basic Research Program of Yunnan Province - Youth Project

he National Natural Science Foundation of China

Project of ministry-province co-construct

the Ten-thousand Talents Program of Yunnan Province — Yunling Scholar of Industrial Technology Leading Talent Project

the Science and Technology Talents and Platform Program of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3