Ectopic Expression of PgF3′5′H in Commercial Gypsophila paniculata Cultivar through Optimized Agrobacterium-Mediated Transformation

Author:

Jin Chunlian1,Sun Dan1,Ma Lulin1,Mo Xijun1,Yang Chunmei1,Li Fan1

Affiliation:

1. Key Laboratory for Flower Breeding of Yunnan Province, National Engineering Research Center for Ornamental Horticulture, Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China

Abstract

Gypsophila paniculata is one of the most popular cut flowers in the world whose major cultivars are blooming white. As is well known, blue flowers could be generated via the overexpression of the gene encoding flavonoid 3′5′-hydroxylase (F3′5′H) in species that naturally lack it. In this study, we established the regeneration and a genetic transformation system for the commercial cultivar ‘YX4’ of G. paniculata and introduced the F3′5′H of Platycodon grandiflorus (PgF3′5′H) successfully into ‘YX4’ using the established protocol. A total of 281 hygromycin (Hyg)-resistant plantlets were obtained, and 38 of them were polymerase chain reaction (PCR) positive, indicating a 13.5% transformation efficiency. Shoot apex without meristem was more suitable for explant due to its high regeneration capacity, and the supplement of thidiazuron (TDZ) provided the most efficient promotion of adventitious bud induction, whereas the supplement of 6-Benzyladenine (6-BA) and 1-naphthaleneacetic acid (NAA) did not affect much. Additionally, the combination of 1 day (d) pre-culture, 5 d co-culture, 10 min infection, 30 mg·L−1 additional acetosyringone (AS) supplement, and 10 mg·L−1 Hyg selection formed the optimized system for ‘YX4’ transformation. This reliable and efficient agrobacterium-mediated transformation of the valuable commercial cultivar ‘YX4’ will contribute not only to the creation and improvement of G. paniculata cultivars, but also to the function research of genes associated with important ornamental traits.

Funder

Yunnan Fundamental Research Projects

National Natural Science Foundation of China

the National Engineering Research Center for Ornamental Horticulture and Key Laboratory for Flower Breeding of Yunnan Province

High-level Talent Introduction Program of Yunnan Province -Industrial Talent Special Project

the Green Food Brand -Build a special project (floriculture) supported by science and technology

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3