Tunneling induced two-dimensional phase grating in a quantum well nanostructure via third and fifth orders of susceptibility

Author:

Vafafard Azar,Sahrai Mostafa,Hamedi Hamid Reza,Asadpour Seyyed Hossein

Abstract

AbstractWe study the nonlinear optical properties in an asymmetric double AlGaAs/GaAs quantum well nanostructure by using an external control field and resonant tunneling effects. It is found that the resonant tunneling can modulate the third-order and fifth-order of susceptibilities via detuning frequency of coupling light. In presence of the resonant tunneling and when the coupling light is in resonance with the corresponding transition, the real parts of third-order and fifth-order susceptibilities are enhanced which are accompanied by nonlinear absorption. However, in off-resonance of coupling light, real parts of third-order and fifth-order susceptibilities enhance while the nonlinear absorption vanishes. We investigate also the two-dimensional electromagnetically induced grating (2D-EIG) of the weak probe light by modulating the third-order and fifth-order susceptibilities. In resonance of coupling light, both amplitude and phase grating are formed in the medium due to enhancement of third-order and fifth-order probe absorption and dispersion. When the coupling light is out of resonance, most of probe energy is transferred from zero-order to higher-order directions due to resonant tunneling effect. The efficiency of phase grating for third-order of susceptibility is higher than phase grating for fifth-order susceptibility. Our proposed model may be useful for optical switching and optical sensors based on semiconductor nanostructures.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3