Reducing the nanoparticles generated at the wheel–rail contact by applying tap water lubricant at subway train operational velocities

Author:

Lee HyunWook

Abstract

AbstractThe formation characteristics and the reduction of nanoparticles emitted from wheel–rail contacts at subway-train velocities of 73, 90, and 113 km/h under dry and water-lubricated conditions (using tap water) were studied using a twin-disk rig. The resulting number concentration (NC) of ultrafine and fine particles increased with train velocity under both conditions. Particle generation varied with slip rate under both conditions in both the particle categories. Furthermore, the formation characteristics at 113 km/h under dry conditions showed a notable deviation from those under water-lubricated conditions in three aspects: (i) The maximum NC of ultrafine particles was higher than that of fine particles, (ii) the predominant peak diameter was in the ultrafine particles category, and (iii) the proportion of ultrafine particles was much higher than those of the fine particles. Applying water decreased the NC of ultrafine and fine particles significantly at all tested velocities (by 54–69% and 87–91%, respectively). Adding water increased the NC of particles ≤ 35 nm in diameter, possibly owing to the increase in water vapor and mineral crystals from tap water. Overall, this study provides a reference for researchers aiming to minimize nanoparticle formation at the wheel–rail contacts by applying a lubricant.

Funder

Korea Railroad Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3