Author:
Mohammed Yasser Hussein Issa,Shamkh Israa M.,Shntaif Ahmed Hassen,Sufyan Muhammad,Rehman Md Tabish,AlAjmi Mohamed F.,Shahwan Moayad,Alghamdi Saad,Abd El-Lateef Amal Ezzat,Khidir Elshiekh B.,Abouzied Amr S.,Khalifa Nasrin E.,A. Khojali Weam M.,Huwaimel Bader,Al Farraj Dunia A.,Almutairi Saeedah Musaed
Abstract
AbstractThis study focused on developing novel pyridine-3-carboxamide analogs to treat bacterial wilt in tomatoes caused by Ralstonia solanacearum. The analogs were synthesized through a multistep process and their structures confirmed using spectroscopy. Molecular docking studies identified the most potent analog from the series. A specific analog, compound 4a, was found to significantly enhance disease resistance in tomato plants infected with R. solanacearum. The structure–activity relationship analysis showed the positions and types of substituents on the aromatic rings of compounds 4a–i strongly influenced their biological activity. Compound 4a, with a chloro group at the para position on ring C and hydroxyl group at the ortho position on ring A, was exceptionally effective against R. solanacearum. When used to treat seeds, the analogs displayed remarkable efficacy, especially compound 4a which had specific activity against bacterial wilt pathogens. Compound 4a also promoted vegetative and reproductive growth of tomato plants, increasing seed germination and seedling vigor. In plants mechanically infected with bacteria, compound 4a substantially reduced the percentage of infection, pathogen quantity in young tissue, and disease progression. The analogs were highly potent due to their amide linkage. Molecular docking identified the best compounds with strong binding affinities. Overall, the strategic design and synthesis of these pyridine-3-carboxamide analogs offers an effective approach to targeting and controlling R. solanacearum and bacterial wilt in tomatoes.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献