Designing metal chelates of halogenated sulfonamide Schiff bases as potent nonplatinum anticancer drugs using spectroscopic, molecular docking and biological studies

Author:

Elsamra Rehab M. I.ORCID,Masoud Mamdouh S.ORCID,Ramadan Ahmed M.ORCID

Abstract

AbstractIn this contribution, five Ni(II) complexes have been synthesized from sulfonamide-based Schiff bases (SB1–SB5) that comprise bromo or iodo substituents in the salicylidene moiety. The chemical structures of these compounds were extensively elucidated by different analytical and physicochemical studies. All ligands act as bidentate chelators with ON binding mode yielding octahedral, square planar, or tetrahedral geometries. The phenolic OH at δ 12.80 ppm in the free Schiff base SB2 vanishes in the 1H NMRspectrum of diamagnetic complex [Ni(SB2–H)2] favoring the OH deprotonation prior to the chelation with Ni(II) ion. The appearance of twin molecular ion peaks ([M − 1]+ and [M + 1]+) is due to the presence of bromine isotopes (79Br and 81Br) in the mass spectra of most cases. Also, the thermal decomposition stages of all complexes confirmed their high thermal stability and ended with the formation of NiO residue of mass 6.42% to 14.18%. Besides, antimicrobial activity and cytotoxicity of the ligands and some selected complexes were evaluated. Among the ligands, SB4 showed superior antimicrobial efficacy with MIC values of 0.46, 7.54, and 0.95 µM against B. subtilis, E. coli, and A. fumigatus strains, respectively. The consortium of different substituents as two bromine atoms either at positions 3 and/or 5 on the phenyl ring and a thiazole ring is one of the reasons behind the recorded optimal activity. Moreover, there is a good correlation between the cytotoxicity screening (IC50) and molecular docking simulation outcomes that predicted a strong binding of SB2 (16.0 μM), SB4 (18.8 μM), and SB5 (6.32 μM) to the breast cancer protein (3s7s). Additionally, [Ni(SB4–H)2] (4.33 µM) has nearly fourfold potency in comparison with cisplatin (19.0 μM) against breast carcinoma cells (MCF-7) and is highly recommended as a promising, potent, as well as low-cost non-platinum antiproliferative agent after further drug authorization processes.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3