Fabrication of nitrogen doped TiO2/Fe2O3 nanostructures for photocatalytic oxidation of methanol based wastewater

Author:

Mersal Mai,Zedan Abdallah F.,Mohamed Gehad G.,Hassan Gamal K.

Abstract

AbstractAn important industrial process that often occurs on the surface of a heterogeneous catalyst using thermochemical or photochemical could help in the oxidation of methanol-based wastewater to formaldehyde. Titania-based photocatalysts have drawn a lot of interest from scientists because they are a reliable and affordable catalyst material for photocatalytic oxidation processes in the presence of light energy. In this study, a straight-forward hydrothermal method for producing n-TiO2@α-Fe2O3 composite photocatalysts and hematite (α-Fe2O3) nanocubes has been done. By adjusting the ratio of n-TiO2 in the prepared composite photocatalysts, the enhancing influence of the nitrogen-doped titania on the photocatalytic characteristics of the prepared materials was investigated. The prepared materials were thoroughly characterized using common physiochemical methods, such as transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), X-ray photoelectrons spectroscopy (XPS), physisorption (BET), and others, in order to learn more about the structure The results obtained showed that nitrogen-doped titania outperforms non-doped titania for methanol photooxidation. The addition of nitrogen-doped titania to their surfaces resulted in an even greater improvement in the photooxidation rates of the methanol coupled with hematite. The photooxidation of methanol in the aqueous solution to simulate its concentration in the wastewater has been occurred. After 3 h, the four weight percent of n-TiO2@α-Fe2O3 photocatalyst showed the highest rate of HCHO production.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3