Author:
Hsu Hsien-Tse,Lin Shao-Ying,Lu Ya-Ting,Chuang Yao-Yuan,Chuang Shiow-Huey
Abstract
AbstractPhotocatalysts consisting of Z-scheme heterojunctions are commonly used in wastewater treatment due to their exceptional reactivity in photocatalysis and highly efficient visible-light utilization. In this work, Fe2O3-decorated MoO3 rods were synthesized through a two-step method and their photodegradation of methylene blue (MB) was evaluated. The Fe2O3/MoO3 rods were characterized by XRD, SEM, micro-Raman, XPS, UV–Vis DRS, and PL to investigate their structural, morphological, and optical properties. The results indicate that the photodegradation efficiency of Fe2O3/MoO3 improved through a reduction in the gap energy and persistence of a 1D hexagonal prism structure. The degradation rate of MB was enhanced from 31.7 to 91.5% after irradiation for 180 min owing to electron–hole separation and Fenton-like process. Formation of the OH radical is a key factor in the photodegradation reaction and with the addition of H2O2 the efficiency can further improve via a Fenton-like mechanism. Furthermore, the Z-scheme mechanism concurrently delineated. The Fe2O3/MoO3 rod composites were also found to retain high photocatalytic efficiency after being reused five times, which may be useful for future applications.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献