Author:
Swain Himanshu Sekhar,Das Basanta Kumar,Upadhyay Aurobinda,Ramteke Mitesh Hiradas,Kumar Vikas,Meena Dharmendra Kumar,Sarkar Uttam Kumar,Chadha Narinder Kumar,Rawat Kiran Dube
Abstract
AbstractThe present study was conducted for 240 days to evaluate the effects of stocking density based on growth attributes, digestive enzymes, muscular composition, biochemical and physiological responses of Labeo rohita fingerlings in tropical inland open water cages. L. rohita (30.35 ± 1.08 g) were randomly distributed into three treatments, namely low stocking density, LSD (10 m−3), medium stocking density, MSD (20 m−3) and high stocking density, HSD (30 m−3) in triplicates. Fish were fed twice daily with CIFRI CAGEGROW® floating feed (crude protein-28%, crude fat-4%). Fish growth and feed efficiency were higher (p < 0.05) in LSD, however, MSD registered a higher yield. Amylase and protease activity reduced whereas lipase activity increased with increasing stocking density. Muscle crude protein and crude fat formed an inverse correlation. The fillet quality deteriorated at higher stocking densities based on Muscle pH, drip loss and frozen leakage rate. The stress biomarkers level (glucose, cortisol, superoxide dismutase and catalase) increased in serum under crowding conditions. Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase in serum were significantly increased in HSD. Serum protein levels decreased with the increase in stocking densities. Body ionic imbalance (Na+, Cl− and K+) was observed under crowding stress. Based on growth attributes and multiple biomarker responses, L. rohita @ 10 m−3 was found to be the optimum density for inland open water cage culture.
Publisher
Springer Science and Business Media LLC