Abstract
A 171-day long experimental trial was undertaken to study intricate physiological response of rohu (Labeo rohita) under stress caused by high stocking density in In-pond raceways system (IPRS). Fingerlings of rohu (initial body weight: 250 ± 1.20 g) were cultured at three different stocking densities; low density (LD) (2.27 kg/m3), medium density (MD) (3.79 kg/m3) and high density (HD) (5.30 kg/m3) in raceways of IPRS production system. Each treatment was in triplicate. Fish growth exhibited a decline in HD treatment statistically as its average weight gain/fish/day was 4.21 g as compared to MD (4.82 g) and LD (4.74 g). Nutritional profile of rohu indicated by the content of crude protein, fatty acids, and profile of amino acids was up to the set dietary benchmarks. Survival rate of fish in all the treatment groups was greater than 99%. The elevated cortisol levels observed in the HD treatment in contrast to the other treatments suggested the presence of stress. The levels of superoxide dismutase, catalase and glutathione peroxidase were also higher in HD as compared to other treatments. However, there were no difference in the level of MDA between the three treatments. Activity of amylase, protease was significantly different in treatment whereas the difference in lipase activity was found to be insignificant. It can be concluded that medium stocking density i.e. 3.79 kg/m3 outperformed the high density (5.30 kg/m3) in different aspects of this study. Nevertheless, additional research is imperative to ascertain whether any intermediate stocking density between medium (3.79 kg/m3) and high (5.30 kg/m3) such as 4 kg/m3, 4.5 kg/m3, or 5 kg/m3, could potentially serve as suitable options for rohu. It is also suggested that brood stock of rohu should be genetically improved to obtain stress resilient fingerlings which will perform better at high stocking density at large scale production level.
Publisher
Public Library of Science (PLoS)
Reference52 articles.
1. World review of capture fisheries and aquaculture insurance;AR Van;Food and Agriculture Organization,2022
2. Introduction to the general principles of aquaculture;H Ackefors;CRC Press,2017
3. Hydrodynamics of an in-pond raceway system with an aeration plug-flow device for application in aquaculture: an experimental study. R. Soc;W Li;Open Sci.,2019
4. Analysis of the growth performance, stress, profile of fatty acids and amino acids, and cortisol in Tilapia (Oreochromis niloticus), cultured at high stocking density using an in-pond raceway system;S Fatima;Saudi J. Biol. Sci,2021