Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm

Author:

Di Nunno Fabio,de Marinis Giovanni,Granata Francesco

Abstract

AbstractIn recent years, the growing impact of climate change on surface water bodies has made the analysis and forecasting of streamflow rates essential for proper planning and management of water resources. This study proposes a novel ensemble (or hybrid) model, based on the combination of a Deep Learning algorithm, the Nonlinear AutoRegressive network with eXogenous inputs, and two Machine Learning algorithms, Multilayer Perceptron and Random Forest, for the short-term streamflow forecasting, considering precipitation as the only exogenous input and a forecast horizon up to 7 days. A large regional study was performed, considering 18 watercourses throughout the United Kingdom, characterized by different catchment areas and flow regimes. In particular, the predictions obtained with the ensemble Machine Learning-Deep Learning model were compared with the ones achieved with simpler models based on an ensemble of both Machine Learning algorithms and on the only Deep Learning algorithm. The hybrid Machine Learning-Deep Learning model outperformed the simpler models, with values of R2 above 0.9 for several watercourses, with the greatest discrepancies for small basins, where high and non-uniform rainfall throughout the year makes the streamflow rate forecasting a challenging task. Furthermore, the hybrid Machine Learning-Deep Learning model has been shown to be less affected by reductions in performance as the forecasting horizon increases compared to the simpler models, leading to reliable predictions even for 7-day forecasts.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3