Machine-learning-based diagnosis of thyroid fine-needle aspiration biopsy synergistically by Papanicolaou staining and refractive index distribution

Author:

Lee Young Ki,Ryu Dongmin,Kim Seungwoo,Park Juyeon,Park Seog Yun,Ryu Donghun,Lee Hayoung,Lim Sungbin,Min Hyun-Seok,Park YongKeun,Lee Eun Kyung

Abstract

AbstractWe developed a machine learning algorithm (MLA) that can classify human thyroid cell clusters by exploiting both Papanicolaou staining and intrinsic refractive index (RI) as correlative imaging contrasts and evaluated the effects of this combination on diagnostic performance. Thyroid fine-needle aspiration biopsy (FNAB) specimens were analyzed using correlative optical diffraction tomography, which can simultaneously measure both, the color brightfield of Papanicolaou staining and three-dimensional RI distribution. The MLA was designed to classify benign and malignant cell clusters using color images, RI images, or both. We included 1535 thyroid cell clusters (benign: malignancy = 1128:407) from 124 patients. Accuracies of MLA classifiers using color images, RI images, and both were 98.0%, 98.0%, and 100%, respectively. As information for classification, the nucleus size was mainly used in the color image; however, detailed morphological information of the nucleus was also used in the RI image. We demonstrate that the present MLA and correlative FNAB imaging approach has the potential for diagnosing thyroid cancer, and complementary information from color and RI images can improve the performance of the MLA.

Funder

National Cancer Center

National research foundation, South Korea

Ministry of Science and ICT, South Korea

Ulsan National Institute of Science and Technology

Korean Thyroid Association

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3