Pattern-based hybrid book recommendation system using semantic relationships

Author:

Wayesa Fikadu,Leranso Mesfin,Asefa Girma,Kedir Abduljebar

Abstract

AbstractIn the fields of machine learning and artificial intelligence, recommendation systems (RS) or recommended engines are commonly used. In today's world, recommendation systems based on user preferences assist consumers in making the best decisions without depleting their cognitive resources. They can be applied to a variety of things, including search engines, travel, music, movies, literature, news, gadgets, and dining. A lot of people utilize RS on social media sites like Facebook, Twitter, and LinkedIn, and it has proven beneficial in corporate settings like those at Amazon, Netflix, Pandora, and Yahoo. There have been numerous proposals for recommender system variations. However, certain techniques result in unfairly recommended things due to biased data because there are no established connections between the items and consumers. In order to solve the challenges mentioned above for new users, we propose in this work to employ Content-based Filtering (CBF) and Collaborative Filtering (CF) with semantic relationships to capture the relationships as knowledge-based book recommendations to readers in a digital library. When proposing things, patterns are more discriminative than single phrases. To capture the similarity of the books that the new user had retrieved, the patterns were grouped in a semantically equivalent manner using the Clustering method. The effectiveness of the suggested model is examined through a series of extensive tests employing Information Retrieval (IR) evaluation criteria. Recall Precision and F-Measure, two of the three widely used performance measuring metrics, were employed. The findings demonstrate that the suggested model performs noticeably better than cutting-edge models.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Book Suggestions Using a Hybrid Model with Sentiment Analysis;2024 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT);2024-07-04

2. An adaptable and personalized framework for top-N course recommendations in online learning;Scientific Reports;2024-05-06

3. State of art and emerging trends on group recommender system: a comprehensive review;International Journal of Multimedia Information Retrieval;2024-05-02

4. Leveraging item attribute popularity for group recommendation;International Journal of System Assurance Engineering and Management;2024-03-17

5. Generative AI-Driven Digital Assistance for E-Learning: A Novel Paradigm for Personalized Recommendations;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3