An adaptable and personalized framework for top-N course recommendations in online learning

Author:

Amin Samina,Uddin M. Irfan,Alarood Ala Abdulsalam,Mashwani Wali Khan,Alzahrani Ahmed Omar,Alzahrani Hamdan Ahmed

Abstract

AbstractIn recent years, the proliferation of Massive Open Online Courses (MOOC) platforms on a global scale has been remarkable. Learners can now meet their learning demands with the help of MOOC. However, learners might not understand the course material well if they have access to a lot of information due to their inadequate expertise and cognitive ability. Personalized Recommender Systems (RSs), a cutting-edge technology, can assist in addressing this issue. It greatly increases resource acquisition through personalized availability for various people of all ages. Intelligent learning methods, such as machine learning and Reinforcement Learning (RL) can be used in RS challenges. However, machine learning needs supervised data and classical RL is not suitable for multi-task recommendations in online learning platforms. To address these challenges, the proposed framework integrates a Deep Reinforcement Learning (DRL) and multi-agent approach. This adaptive system personalizes the learning experience by considering key factors such as learner sentiments, learning style, preferences, competency, and adaptive difficulty levels. We formulate the interactive RS problem using a DRL-based Actor-Critic model named DRR, treating recommendations as a sequential decision-making process. The DRR enables the system to provide top-N course recommendations and personalized learning paths, enriching the student's experience. Extensive experiments on a MOOC dataset such as the 100 K Coursera course review validate the proposed DRR model, demonstrating its superiority over baseline models in major evaluation metrics for long-term recommendations. The outcomes of this research contribute to the field of e-learning technology, guiding the design and implementation of course RSs, to facilitate personalized and relevant recommendations for online learning students.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3