Introducing graphene quantum dots in decomposable wheat starch-gelatin based nano-biofilms

Author:

Bakeshlouy Afshar Marzieh,Poursattar Marjani Ahmad,Gozali Balkanloo Peyman

Abstract

AbstractThis research aims to discover a viable substitute for the common harmful plastic packaging utilized in food products. Citric acid was employed as an accessible and risk-free precursor in synthesizing graphene quantum dots (GQDs). Using the efficient carbonization technique, GQDs were obtained and subsequently transferred to nano-biofilms in varying percentages relative to natural polymers. FT-IR, XRD, FE-SEM, EDX, and AFM analyses were conducted to examine the formation of the nano-biofilms. GQDs demonstrated optimal performance in the disk diffusion method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical approach. Adding GQDs to starch and gelatin composite improved the physical properties of nano-biofilms such as moisture contact, swelling index, and solubility. The transparency of the films was reduced by GQDs, which reduces the transmission of visible light and plays an important role in food protection. The packaging films' weight loss due to decomposition was examined after being buried in soil for 50 days, which relieved the eco-concerns of these packaging films. To evaluate the performance of the films in inhibiting food spoilage, cherries, and cucumbers were packed with a control film and the fabricated film containing 14 wt% of GQD. After 14 days, the modified nano-biofilm was able to maintain the freshness of the samples.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3