Author:
Takeda Masahiko,Oami Takehiko,Hayashi Yosuke,Shimada Tadanaga,Hattori Noriyuki,Tateishi Kazuya,Miura Rie E.,Yamao Yasuo,Abe Ryuzo,Kobayashi Yoshio,Nakada Taka-aki
Abstract
AbstractRapid and precise prehospital recognition of acute coronary syndrome (ACS) is key to improving clinical outcomes. The aim of this study was to investigate a predictive power for predicting ACS using the machine learning-based prehospital algorithm. We conducted a multicenter observational prospective study that included 10 participating facilities in an urban area of Japan. The data from consecutive adult patients, identified by emergency medical service personnel with suspected ACS, were analyzed. In this study, we used nested cross-validation to evaluate the predictive performance of the model. The primary outcomes were binary classification models for ACS prediction based on the nine machine learning algorithms. The voting classifier model for ACS using 43 features had the highest area under the receiver operating curve (AUC) (0.861 [95% CI 0.775–0.832]) in the test score. After validating the accuracy of the model using the external cohort, we repeated the analysis with a limited number of selected features. The performance of the algorithms using 17 features remained high AUC (voting classifier, 0.864 [95% CI 0.830–0.898], support vector machine (radial basis function), 0.864 [95% CI 0.829–0.887]) in the test score. We found that the machine learning-based prehospital algorithms showed a high predictive power for predicting ACS.
Funder
Japan Agency for Medical Research and Development
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献