Preclinical identification of acute coronary syndrome without high sensitivity troponin assays using machine learning algorithms

Author:

Goldschmied Andreas,Sigle Manuel,Faller Wenke,Heurich Diana,Gawaz Meinrad,Müller Karin Anne Lydia

Abstract

AbstractPreclinical management of patients with acute chest pain and their identification as candidates for urgent coronary revascularization without the use of high sensitivity troponin essays remains a critical challenge in emergency medicine. We enrolled 2760 patients (average age 70 years, 58.6% male) with chest pain and suspected ACS, who were admitted to the Emergency Department of the University Hospital Tübingen, Germany, between August 2016 and October 2020. Using 26 features, eight Machine learning models (non-deep learning models) were trained with data from the preclinical rescue protocol and compared to the “TropOut” score (a modified version of the “preHEART” score which consists of history, ECG, age and cardiac risk but without troponin analysis) to predict major adverse cardiac event (MACE) and acute coronary artery occlusion (ACAO). In our study population MACE occurred in 823 (29.8%) patients and ACAO occurred in 480 patients (17.4%). Interestingly, we found that all machine learning models outperformed the “TropOut” score. The VC and the LR models showed the highest area under the receiver operating characteristic (AUROC) for predicting MACE (AUROC = 0.78) and the VC showed the highest AUROC for predicting ACAO (AUROC = 0.81). A SHapley Additive exPlanations (SHAP) analyses based on the XGB model showed that presence of ST-elevations in the electrocardiogram (ECG) were the most important features to predict both endpoints.

Funder

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3