Ability of a dynamical climate sensitive disease model to reproduce historical Rift Valley Fever outbreaks over Africa

Author:

Chemison Alizée,Ramstein Gilles,Jones Anne,Morse Andy,Caminade Cyril

Abstract

AbstractRift Valley Fever (RVF) is a zoonosis transmitted by Aedes and Culex mosquitoes, and is considered a priority pathogen by the WHO. RVF epidemics mostly occur in Africa and can decimate livestock herds, causing significant economic losses and posing health risks for humans. RVF transmission is associated with the occurrence of El Niño events that cause floods in eastern Africa and favour the emergence of mosquitoes in wetlands. Different risk models have been developed to forecast RVF transmission risk but very few studies have validated models at pan-African scale. This study aims to validate the skill of the Liverpool Rift Valley Fever model (LRVF) in reproducing RVF epidemics over Africa and to explore the relationship between simulated climatic suitability for RVF transmission and large-scale climate modes of variability such as the El Niño Southern Oscillation (ENSO) and the Dipole Mode Index (DMI). Our results show that the LRVF model correctly simulates RVF transmission hotspots and reproduces large epidemics that affected African countries. LRVF was able to correctly reproduce major RVF epidemics in Somalia, Kenya, Zambia and to a lesser extent for Mauritania and Senegal. The positive phases of ENSO and DMI are associated with an increased risk of RVF over the Horn of Africa, with important time lags. Following research activities should focus on the development of predictive modelling systems at different time scales.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3