Experimental and computational investigation on underlying factors promoting high coke resistance in NiCo bimetallic catalysts during dry reforming of methane

Author:

Saelee Tinnakorn,Lerdpongsiripaisarn Mongkol,Rittiruam Meena,Somdee Siriwimol,Liu Anchittha,Praserthdam Supareak,Praserthdam Piyasan

Abstract

AbstractGlobal warming remains one of the greatest challenges. One of the most prominent solutions is to close the carbon cycle by utilizing the greenhouse gas: CO2, and CH4, as a feedstock via the dry reforming of methane (DRM). This work provided an insight into how the NiCo bimetallic catalyst can perform with high stability against coking during DRM compared to the Ni and Co monometallic catalysts, in which the experimental and computational techniques based on density functional theory were performed. It was found that the high stability against coking found on the NiCo surface can be summarized into two key factors: (1) the role of Co weakening the bond between a Ni active site and coke (2) significantly high surface coke diffusion rate on NiCo. Moreover, the calculation of the surface fraction weighted rate of coke diffusion which modeled the real NiCo particle into four regions: Ni-dominant, Co-dominant, NiCo-dominant, and the mixed region consisting a comparable amount of the former there regions, have shown that the synthesis of a NiCo particle should be dominated with NiCo region while keeping the Ni-dominant, and Co-dominant regions to be as low as possible to facilitate coke diffusion and removal. Thus, to effectively utilize the coke-resistant property of NiCo catalyst for DRM, one should together combine its high coke diffusion rate with coke removal mechanisms such as oxidation or hydrogenation, especially at the final diffusion site, to ensure that there will not be enough coke at the final site that will cause back-diffusion.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3